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Abstract. The numerical construction of a Green’s function for multiple interacting planar cracks in an anisotropic
elastic space is considered. The numerical Green’s function can be used to obtain a special boundary-integral
method for an important class of two-dimensional elastostatic problems involving planar cracks in an anisotropic
body.
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1. Introduction

Through the use of a suitable Green’s function, an elastostatic crack problem may be for-
mulated in terms of boundary-integral equations whose path of integration does not include
the crack faces. When such boundary-integral equations are employed to obtain a boundary-
element method for the numerical solution of the crack problem, it is not necessary to model
and discretize the crack faces. Furthermore, with the singular behavior of the elastic stress
at the crack tips automatically built into the formulation, the numerical computation of the
displacement and the stress fields near the crack tips can be accurately carried out [1–2].

However, the derivation of the required Green’s function is a mathematically sophisticated
task. The complexity involved depends on the geometry of the cracks as well as the boundary
conditions imposed upon them. Analytical Green’s functions seem to be available only for
cracks with relatively simple geometries and boundary conditions: a single traction-free planar
crack in an anisotropic space [1–2], a single fully closed planar crack in an anisotropic space
[3], a single traction-free planar crack in an isotropic space [4], and a single traction-free arc
crack in an isotropic space [5]. In general, one may find it difficult, if not impossible, to derive
the required Green’s function explicitly in a suitable exact form.

To apply the Green’s function approach to solve a wider and a more general class of
crack problems, Telles and his co-researchers proposed a numerical technique, based on the
hypersingular integral formulation of crack problems, for determining the required Green’s
function [6–10] in an isotropic space. With the work in [6] as a guide, the present paper seeks
to construct a numerical Green’s function for arbitrarily located traction-free planar cracks in
an anisotropic space under two-dimensional elastostatic deformations. The analysis presented
is valid for any general anisotropic material, that is, the material is not assumed to possess
any particular symmetries in its anisotropy, and it allows for a coupling of antiplane and in-
plane deformations. The numerical Green’s function is employed to derive a boundary-integral
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method for the numerical solution of an elastostatic crack problem involving an infinitely long
anisotropic cylinder with a finite cross-section. Some specific problems are solved using the
boundary-integral method and the numerical results obtained are presented.

2. A class of crack problems

With reference to a Cartesian co-ordinate frame denoted by 0x1x2x3, consider an infinitely
long anisotropic cylinder whose interior contains P arbitrarily located planar cracks. The geo-
metries of the cylinder and the cracks do not change along the x3-axis. The exterior boundary
of the cylinder is denoted by C, the region between C and the cracks by R and a typical k-th
crack by γ (k). It is assumed that the cracks do not intersect with one another or the exterior
boundary C. On the plane x3 = 0, the boundary C appears as a simple closed curve and the
crack γ (k) as a straight cut with tips (a(k), b(k)) and (c(k), d(k)). For the purpose of the present
paper, γ (k) is taken to be a directed straight line segment from (a(k), b(k)) to (c(k), d(k)).

At each and every point on the boundary C, either the displacements or the tractions are
prescribed in such a way that the cracks open up and become traction-free. The prescribed
displacements and/or tractions are assumed to be independent of the spatial co-ordinate x3

and time. The problem is to determine the displacement and the stress fields throughout the
body.

From a mathematical standpoint, one has to solve the equilibrium equation of elasticity
given by the system of elliptic partial differential equations

cijkp

∂2uk

∂xj∂xp

= 0 in R, (1)

subject to

ui = ũi for (x1, x2) ∈ D, pi = p̃i for (x1, x2) ∈ E,

σijm
(k)
j → 0 as (x1, x2) → (y1, y2) ∈ γ (k) (k = 1, 2, · · · , P ), (2)

where ui and σij = cijkp∂uk/∂xp are, respectively, the elastic displacements and stresses, cijkp

are the elastic moduli of the anisotropic cylinder, pi = σijnj is the traction, nj(x1, x2) are the
components of the unit normal outward vector on C at the point (x1, x2), D and E are non-
intersecting curves such that D∪E = C, ũi are suitably prescribed displacements on D, p̃i are
the given tractions on E, m

(k)
j = [(d(k) −b(k))/�(k), (a(k) −c(k))/�(k)] is a unit normal vector to

the crack γ (k), and �(k) is the length of γ (k), that is, �(k) = √
(d(k) − b(k))2 + (a(k) − c(k))2. The

Einsteinian convention of summing over a repeated index applies to Latin subscripts running
from 1 to 3.

3. A numerical Green’s function

A function �ks(x1, x2, ξ1, ξ2) satisfying the system of partial differential equations

cijkp

∂2�ks

∂xj∂xp

= δisδ(x1 − ξ1, x2 − ξ2), (3)

and the conditions on the cracks given by

cijrp

∂�rs

∂xp

m
(k)
j → 0 as (x1, x2) → (y1, y2) ∈ γ (k) (k = 1, 2, · · · , P ), (4)
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where δis is the Kronecker-delta and δ is the Dirac-delta function, is sought.
Let �rs(x1, x2, ξ1, ξ2) be given by

�rs(x1, x2, ξ1, ξ2) = �[1]
rs (x1, x2, ξ1, ξ2) + �[2]

rs (x1, x2, ξ1, ξ2), (5)

�[1]
rs (x1, x2, ξ1, ξ2) = 1

2π
Re

3∑
α=1

{
ArαNαj log([x1 − ξ1] + τα[x2 − ξ2])

}
djs,

(6)

where djs are real constants given by

Im{
3∑

α=1

Li2αNαr}drj = δij ,

where Re and Im denote, respectively, the real and the imaginary part of a complex number
and the constants Akα, Nαj , τα, Lpkα and Nαr are related to the elastic moduli cijkp and to one
other as explained in [2], [3] and [11].

The function �[1]
rs (x1, x2, ξ1, ξ2) in (6) is a solution of (3). It follows that �[2]

rs (x1, x2, ξ1, ξ2)

is required to satisfy

cijkp

∂2�
[2]
ks

∂xj∂xp

= 0 (7)

everywhere in the anisotropic space with the cracks γ (1), γ (2), · · · , γ (P−1) and γ (P ).
The conditions (4) on the cracks require that

cijrp

∂�[2]
rs

∂xp

m
(k)
j → �

(k)
is (x1, x2, ξ1, ξ2) as (x1, x2) → (y1, y2) ∈ γ (k) (k = 1, 2, · · · , P ), (8)

where

�
(k)
is (x1, x2, ξ1, ξ2) = − 1

2π
Re

3∑
α=1

{
Tijαsm

(k)
j

[x1 − ξ1] + τα[x2 − ξ2]

}
, (9)

with Tijαs = LijαNαrdrs. It is assumed that (ξ1, ξ2) does not lie on any of the cracks.
The analysis in [12] can be used to find �[2]

rs (x1, x2, ξ1, ξ2). Take

�[2]
rs (x1, x2, ξ1, ξ2) =

P∑
k=1

∫
γ (k)

�ps(y1, y2, ξ1, ξ2)�
(k)
pr (x1, x2, y1, y2)ds(y1, y2), (10)

where �ps(y1, y2, ξ1, ξ2) are functions yet to be determined. The system (7) is satisfied by
(10).

Notice that the integration over γ (k) in (10) is one over a directed straight line segment
from (a(k), b(k)) to (c(k), d(k)). As explained in the reference [12], for (y1, y2) ∈ γ (k), the
function �rs(y1, y2, ξ1, ξ2) gives the difference (jump) in the value of �[2]

rs (x1, x2, ξ1, ξ2) as
(x1, x2) approaches (y1, y2) from opposite sides of the line segment γ (k).
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From (10), the conditions (8) give rise to the system of hypersingular integral equations

H

∫ 1

−1

χ
(q)

pk �
(q)
ps (v, ξ1, ξ2)dv

(t − v)2
+

P∑
n=1
n�=q

∫ 1

−1
�(n)

ps (v, ξ1, ξ2)K
(nq)

pk (v, t)dv

= �
(q)

ks (X
(q)

1 (t),X
(q)

2 (t), ξ1, ξ2) for − 1 < t < 1 (q = 1, 2, · · · , P ), (11)

where H indiactes that the integral is to be interpreted in the Hadamard finite-part sense and

�(n)
ps (v, ξ1, ξ2) = �ps(X

(n)

1 (v),X
(n)

2 (v), ξ1, ξ2),

χ
(q)

pk = 1

π
Re

3∑
α=1

{
�(q)Qpklrαm

(q)

l m
(q)
r

[(c(q) − a(q)) + τα(d(q) − b(q))]2

}
,

K
(nq)

pk (v, t) = 1

4π
Re

3∑
α=1

{
�(n)Qpklrαm

(q)

l m(n)
r

[�(nq)(v, t) + τα�
(nq)(v, t)]2

}
,

where Qpklrα = (ckli1+ταckli2)Tprαi, �(nq)(v, t) = X
(n)

1 (v)−X
(q)

1 (t), �(nq)(v, t) = X
(n)

2 (v)−
X

(q)

2 (t), 2X
(n)
1 (t) = [c(n) + a(n)] + [c(n) − a(n)]t and 2X

(n)
2 (t) = [d(n) + b(n)] + [d(n) − b(n)]t.

The method in the reference [13] is chosen to solve (11) numerically for �
(q)
ps (v, ξ1, ξ2).

Let �(n)
ps (v, ξ1, ξ2) be given approximately by

�(n)
ps (v, ξ1, ξ2) �

√
1 − v2

J∑
j=1

φ(nj)
ps (ξ1, ξ2)U

(j−1)(v), (12)

where U(j)(x) = sin([j + 1] arccos(x))/ sin(arccos(x)) (−1 < x < 1) is the j -th order
Chebyshev polynomial of the second kind and φ

(nj)
ps (ξ1, ξ2) are parameters to be determined.

Through substituting (12) in (11) and collocating (11) by letting t = t (i) ≡ cos([2i −
1]π/[2J ]) for i = 1, 2, · · · , J, a system of linear algebraic equations containing the un-
knowns φ(ni)

ps (ξ1, ξ2) can be obtained as follows:

−
J∑

j=1

jπφ(qj)
ps (ξ1, ξ2)χ

(q)

pk U(j−1)(t (i))

+
J∑

j=1

P∑
n=1
n�=q

φ(nj)
ps (ξ1, ξ2)

∫ 1

−1

√
1 − v2U(j−1)(v)K

(nq)

pk (v, t(i))dv

= �
(q)

ks (X
(q)

1 (t(i)), X
(q)

2 (t(i)), ξ1, ξ2)

for i = 1, 2, · · · , J and q = 1, 2, · · · , P . (13)

Once φ(ni)
ps (ξ1, ξ2) are determined from (13), �[2]

rs (x1, x2, ξ1, ξ2) can be calculated approx-
imately using

�[2]
rs (x1, x2, ξ1, ξ2) � 1

2

P∑
n=1

�(n)

J∑
j=1

φ(nj)
ps (ξ1, ξ2)

∫ 1

−1

√
1 − t2

× U(j−1)(t)�(n)
pr (x1, x2, X

(n)

1 (t),X
(n)

2 (t))dt. (14)
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If the points (x1, x2) and (ξ1, ξ2) do not lie on any of the cracks, the numerical evaluation of
�[2]

rs (x1, x2, ξ1, ξ2) as given by (14) does not pose any mathematical difficulties. The definite
integrals over the interval [−1, 1] in (13) and (14) can be easily and accurately computed by
using the numerical quadrature formula (25.4.40) listed in the mathematical handbook [14,
p. 889].

Notice that in (13) the coefficient of the unknown φ
(qj)
ps (ξ1, ξ2) is independent of the sub-

script s and the point (ξ1, ξ2). Thus, in solving (13) to determine φ
(qj)
ps (ξ1, ξ2) for different

values of the subscript s and for different points (ξ1, ξ2), the square matrix containing the
coefficients of the unknowns has to be computed and processed only once. For example, if
the LU decomposition technique together with backward substitutions is used to solve (13),
one has to factorize the square matrix into a product of a lower and an upper triangular matrix
only once.

Together with (13) and (14), (5–6) gives a useful numerical Green’s function which can be
employed to obtain a special boundary-integral formulation for the crack problem described
in Section 2. In the integral formulation, the path of integration does not include the cracks,
and the evaluation of �[2]

rs (x1, x2, ξ1, ξ2) at points (x1, x2) and (ξ1, ξ2) on the cracks is not
required.

4. A boundary-integral method

If the Green’s function �ik(x1, x2, ξ1, ξ2) satisfying (4), as given approximately by (5–6) to-
gether with (13) and (14), is used, a direct boundary-integral formulation for the crack problem
in Section 2 is given by (see [1–10]):

λ(ξ1, ξ2)uk(ξ1, ξ2) =
∫

C

[ui(x1, x2)�ik(x1, x2, ξ1, ξ2)

− pi(x1, x2)�ik(x1, x2, ξ1, ξ2)]ds(x1, x2), (15)

where λ(ξ1, ξ2) = 1 if (ξ1, ξ2) lies in the interior of R and λ(ξ1, ξ2) = 1/2 if (ξ1, ξ2) lies on a
smooth part of C, and

�ik(x1, x2, ξ1, ξ2) = cijrsnj(x1, x2)
∂

∂xs

[�rk(x1, x2, ξ1, ξ2)].

Notice that the path of integration in (15) is over only the exterior boundary C of the aniso-
tropic cylinder.

Now, from (2), either ui or pi (not both) are known at each and very point on C. The
boundary C and the integral equations (15) can be discretized to determine approximately the
unknown displacements and/or tractions on C. To do this, the boundary C is approximated
using M straight line segments denoted by C(1), C(2), · · · , C(M−1) and C(M). Across the
segment C(m), the displacements ui and the traction pi are approximated by constants u

(m)
i

and p
(m)
i , respectively. On a given element C(m), either u

(m)
i or p

(m)
i are known. Through

approximating (15), the remaining unknown constants can be determined from the system of
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linear algebraic equations:

1

2
u

(m)
k =

M∑
n=1

u
(n)
i

∫
C(n)

�ik(x1, x2, ξ
(m)
1 , ξ

(m)
2 )ds(x1, x2)

−
M∑

n=1

p
(n)
i

∫
C(n)

�ik(x1, x2, ξ
(m)

1 , ξ
(m)

2 )ds(x1, x2)

for m = 1, 2, · · · ,M, (16)

where (ξ
(m)

1 , ξ
(m)

2 ) is the midpoint of C(m).

Details on the derivation of (16) and the computation of the coefficients of the linear
algebraic equations may be found in [2] and [3].

Once u
(m)
i and p

(m)
i are all determined, the displacements (and hence the stresses) at any

interior point (ξ1, ξ2) in R can be computed approximately using

uk(ξ1, ξ2) =
M∑

n=1

u
(n)
i

∫
C(n)

�ik(x1, x2, ξ1, ξ2)ds(x1, x2)

−
M∑

n=1

p
(n)
i

∫
C(n)

�ik(x1, x2, ξ1, ξ2)ds(x1, x2). (17)

It is also possible to determine the crack-opening displacements when u
(m)
i and p

(m)
i are all

known. This can be done by solving the hypersingular integral equations [6]:

H

∫ 1

−1

χ
(q)

pk �u
(q)
p (v)dv

(t − v)2
+

P∑
n=1
n�=q

∫ 1

−1
�u(n)

p (v)K
(nq)

pk (v, t)dv = S
(q)

k (t)

for − 1 < t < 1 (q = 1, 2, · · · , P ), (18)

where �u
(q)
p (v) (−1 < v < 1) is a function that gives the crack-opening displacements at the

point (X
(q)

1 (v),X
(q)

2 (v)) of the crack γ (q), and

S
(q)

k (t) = −
M∑

n=1

u
(n)
i

∫
C(n)

ckjrsm
(q)

j

∂

∂ξs

[�[1]
ir (x1, x2, X

(q)

1 (t),X
(q)

2 (t))]ds(x1, x2)

+
M∑

n=1

p
(n)
i

∫
C(n)

ckjrsm
(q)

j

∂

∂ξs

[�[1]
ir (x1, x2, X

(q)

1 (t),X
(q)

2 (t))]ds(x1, x2).

Notice that S
(q)

k (t) is regarded as known after (16) is solved.
The system (18) can be solved numerically using the same method for (11). The unknown

functions �u(n)
p (v) are approximated using

�u(n)
p (v) �

√
1 − v2

J∑
j=1

ψ(nj)
p U(j−1)(v), (19)
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where ψ
(nj)
p are constants determined by the system of linear algebraic equations

−
J∑

j=1

jπψ(qj)
p χ

(q)

pk U(j−1)(t (i))

+
J∑

j=1

P∑
n=1
n�=q

ψ(nj)
p

∫ 1

−1

√
1 − v2U(j−1)(v)K

(nq)

pk (v, t(i))dv

= S
(q)

k (t(i)) for i = 1, 2, · · · , J and q = 1, 2, · · · , P, (20)

where t (i) = cos([2i − 1]π/[2J ]) as in (13).
Notice that the unknown ψ

(qj)
p in (20) has the same coefficient as φ

(qj)
ps (ξ1, ξ2) in (13).

Thus, in solving (20) for the unknowns ψ
(qj)
p , it is not necessary to set up and process again

the matrix containing the coefficients of the unknowns.
Once the unknowns ψ

(qj)
p are determined, the crack-opening displacements can be approx-

imately computed using (19) and crack parameters of practical interest, such as the crack
energy and the relevant crack tip stress intensity factors, can also be extracted.

5. Numerical examples

For the purpose of applying the boundary-integral approach discussed above to solve some
specific crack problems, consider a particular transversely isotropic material whose elastic
behavior is governed by the system

C
∂2u1

∂x2
1

+ L
∂2u1

∂x2
2

+ (F + L)
∂2u2

∂x1∂x2
= 0,

L
∂2u2

∂x2
1

+ A
∂2u2

∂x2
2

+ (F + L)
∂2u1

∂x1∂x2
= 0,

L
∂2u3

∂x2
1

+ 1

2
(A − N)

∂2u3

∂x2
2

= 0. (21)

For the partial differential equations (21), constants such as Akα, Lijα and τα which are
required in the computation of the Green’s function and in the boundary-integral method can
all be explicitly expressed in terms of the elastic constants A, N, F, C and L. For further
details, refer to [2] and [3].

For the first test problem, the exterior boundary of the region R (on the plane x3 = 0) is
taken to be a square with vertices (2, 2), (−2, 2), (−2,−2) and (2,−2). The interior of R

contains a single crack occupying the region −1 < x1 < 1, x2 = 0.
A particular displacement field that satisfies (21) [or more generally (1)] in the whole of

the 0x1x2 plane with the single crack described above and its corresponding stress field are
given by

uk = Re

3∑
α=1

AkαMα2(z
2
α − 1)1/2, σkj = Re

3∑
α=1

LkjαMα2zα(z
2
α − 1)−1/2, (22)

where zα = x1 + ταx2 and [Mαk] is the inverse matrix of [Lk2α]. It may be verified that with
(22) the conditions that the crack is traction-free are satisfied, i.e., σk2 = 0 on the crack.
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Table 1. A comparison between the numerical and the exact displacement (u1, u2) at
various selected points in the interior of the square domain. The numerical results from
the boundary-integral method (BIM) with the numerical Green’s function (NGF) obtained
using (M, J ) = (60, 10) and (M, J ) = (120, 20) are given in the second and third
columns respectively.

Point

(x1, x2)

BIM with NGF

(M, J ) = (60, 10)

BIM with NGF

(M, J ) = (120, 20)
Exact

(1·10, 0·00) (0·1942, 0·0000) (0·1924, 0·0000) (0·1908, 0·0000)

(0·50, 0·80) (0·3097, 1·2149) (0·3091, 1·2169) (0·3086, 1·2188)

(0·10, 0·70) (0·06230, 1·3775) (0·06228, 1·3796) (0·06216, 1·3816)

(1·90, 0·10) (0·6834, 0·05311) (0·6779, 0·05202) (0·6756, 0·05190)

(0·90, 0·20) (0·3453, 0·6529) (0·3486, 0·6551) (0·3474, 0·6558)

(1·05, 1·05) (0·5622, 0·9116) (0·5611, 0·9134) (0·5598, 0·9148)

For a particular problem, (22) is used to generate displacements on the vertical sides of the
square and tractions on the horizontal sides. The boundary-integral approach, together with the
special numerical Green’s function (as described in Sections 3 and 4), is used to solve (21) in
the region −2 < x1 < 2, −2 < x2 < 2, which contains the traction-free crack −1 < x1 < 1,

x2 = 0, subject to the boundary data generated by (22) on the sides of the square. If the
boundary-integral method really works, one should be able to recover the displacement (22)
[and hence the stress as well] approximately at any interior point in the square domain through
the use of (17).

For the mere purpose of illustration, the elastic constants for titanium as given by A =
1·62, N = 0·92, F = 0·69, C = 1·81 and L = 0·467 (in gram per centimeter per
microsecond square) are chosen for computations carried out using (M, J ) = (60, 10) and
(M, J ) = (120, 20).

Numerical values of the displacement (u1, u2) computed using (17) are compared with the
exact ones from (22) in Table 1 at various selected points in the interior of the square domain.
(Note that u3 = 0 for this particular test problem.) From the table, it is obvious that there
is a good agreement between the numerical and the exact values of (u1, u2). The numerical
values improve in accuracy when the number of boundary elements (M) and the number of
collocation points on the crack (J ) used are doubled. More specifically, if the error of the
numerical displacement is calculated according to the formula

Error =
√

(unumerical
1 − uexact

1 )2 + (unumerical
2 − uexact

2 )2,

then the average error of the displacement in the third column of Table 1 (given by 0·0019) is
nearly two and the half times lower than that in the second column (given by 0·0045).

The crack-opening displacements �uk(x1) for the single crack −1 < x1 < 1, x2 = 0 are
obtained numerically from (19) and (20). From (22), the exact crack-opening displacements
are given by

�uk(x1) = vk

√
1 − x2

1 , (23)
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Figure 1. Plots of the numerical and the exact non-dimensionalized crack-opening displacement (COD)
�u2(x)/v2 for x ∈ [0, 1].

where vk = 2Re{i(Ak1M12 + Ak2M22 + Ak3M32)} and (i = √−1). For the constants Akα

and Mαp associated with the partial differential equations (21), it can be shown that v1 = 0
and hence �u1 = 0. The numerically obtained crack-opening displacements indicate that
�u1(x) = 0 and �u2(x) = �u2(−x) for −1 < x < 1. Thus, in Figure 1, a graph-
ical comparison between the numerical and the exact crack-opening displacements is made
for only �u2(x)/v2 for x ∈ [0, 1]. The numerical values of �u2(x)/v2 are obtained using
(M, J ) = (60, 10) and (M, J ) = (120, 20). As the numerical and the exact values of
�u2(x)/v2 agree to at least 2 significant figures, the three graphs in Figure 1 are visually
indistinguishable.

For the crack −1 < x1 < 1, x2 = 0, the mode I and II stress intensity factors at the crack
tips (±1, 0) are defined by

K+
I = lim

x→1+

√
2(x − 1)σ22(x, 0), K−

I = lim
x→−1−

√−2(x + 1)σ22(x, 0)

K+
II = lim

x→1+

√
2(x − 1)σ21(x, 0), K−

II = lim
x→−1−

√−2(x + 1)σ21(x, 0).

Now if the crack-opening displacements are approximately given by (19) written in the form

�uk(x) �
√

1 − x2

J∑
j=1

ψ
(j)

k U(j−1)(x) for − 1 < x < 1,

then the stress intensity factors can be shown to be approximately given by

K±
I � wp2

J∑
j=1

ψ(j)
p U(j−1)(±1), K±

II � wp1

J∑
j=1

ψ(j)
p U(j−1)(±1),

where wpk = −Re{(Qpk221 + Qpk222 + Qpk223)/2}.
In Table 2, the numerical stress intensity factors obtained using (M, J ) = (60, 10) and

(M, J ) = (120, 20) are compared with the exact values calculated from (22). There is a good
agreement between the numerical and the exact values of the stress-intensity factors.

For another specific problem governed by the system (21), take a rectangular slab occupy-
ing −k < x1 < k, −h < x2 < h, where k and h are given positive constants. The slab
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Table 2. A comparison between the numerical stress intensity factors (SIF) from the
boundary-integral method with (M, J ) = (60, 10) and (M, J ) = (120, 20) and the
exact values.

SIF
BIM with NGF

(M, J ) = (60, 10)

BIM with NGF

(M, J ) = (120, 20)
Exact

K+
I = K−

I 0·9980 0·9991 1·0000

K+
II = K−

II 0·0000 0·0000 0·0000

Table 3. Mode III stress intensity factors at the inner and outer tips of the coplanar
cracks in the rectangular slab.

a/� BIM with NGF Reference [15]

K inner
III

/(T0
√

�) Kouter
III

/(T0
√

�) K inner
III

/(T0
√

�) Kouter
III

/(T0
√

�)

0.10 1·7087 1·3140 1·7112 1·3173

0.20 1·4615 1·2795 1·4649 1·2828

0.30 1·3621 1·2678 1·3654 1·2712

0.40 1·3108 1·2691 1·3140 1·2727

0.50 1·2828 1·2821 1·2861 1·2861

contains a pair of coplanar cracks a < |x1| < b, x2 = 0, where a and b are positive constants
such that a < b. The horizontal sides of the slab are acted upon by constant antiplane shear
stress σ23 = T0 while the vertical sides are stress-free. For this problem, u1 = u2 = 0 and
u3 is governed by the third equation in (21). The reference [15] presents a semi-analytical
method of solution in which the Fourier transform together with the Fourier series is applied
to formulate the problem in terms of a system of hypersingular integral equations to be solved
numerically.

Here the boundary-integral method, together with the numerical Green’s function for the
two stress-free coplanar cracks, is used to numerically determine u3 at all points on the sides
of the squares using the constants for titanium. The mode III stress intensity factors K inner

III and
Kouter

III at, respectively, the inner and the outer tips of the coplanar cracks defined by

K inner
III = lim

x→a−

√
2(a − x)σ23(x, 0), Kouter

III = lim
x→b+

√
2(x − b)σ23(x, 0)

are then extracted from the boundary-integral solution. In Table 3, for k/� = h/� = 3 and
selected values of a/�, where � = (b−a)/2, the numerical values of the non-dimensionalized
stress intensity factors K inner

III /(T0

√
�) and Kouter

III /(T0

√
�), obtained using (M, J ) = (96, 10),

are compared with those given in the reference [15]. The relative discrepancy between the two
sets of values for the stress-intensity factors is well under 1%. When the number of boundary
elements is doubled to 192, the difference is further reduced.
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6. Final remarks

The validity of the numerical Green’s function (constructed in Section 3) and the boundary-
integral method (described in Section 4) for the class of multiple-interacting-crack problems
under consideration is clearly demonstrated by the numerical results obtained for the specific
problems involving a particular transversely isotropic material. The numerical results also
suggest that relevant crack parameters such as the crack tip stress intensity factors can be
accurately extracted using the boundary-integral approach presented.

It is possible to extend the numerical approach presented to include edge cracks if the
method for solving the relevant hypersingular integral equations is appropriately modified as
explained in [6] and [8] or as in [13]. More generally, the hypersingular integral equations for
curved cracks can also be derived from Equation (10) (with γ (k) being the curve giving the
shape of the k-th crack) and solved numerically as described in [6] or [16]. A Green’s function
for curved cracks in anisotropic solids can then be constructed numerically.
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